The Case for Learned Index Structures

This paper introduces the concept of ‘learned index structures’ as a revolutionary approach to optimizing data access in database systems. By leveraging machine learning models, particularly deep learning models, the authors propose a new paradigm for replacing traditional index structures like B-trees, hash indexes, and Bloom filters.
Machine Learning
Systems and Performance
AI for Science
Published

August 2, 2024

Learned indexes offer significant performance gains and memory savings compared to traditional structures across various datasets. The Recursive Model Index (RMI) architecture helps improve prediction accuracy, and the potential for hybrid indexing combining neural networks and traditional techniques showcases a promising future for enhancing database systems’ efficiency and scalability.

Listen on your favorite platforms

Spotify Apple Podcasts YouTube RSS Feed

Listen to the Episode

The (AI) Team

  • Alex Askwell: Our curious and knowledgeable moderator, always ready with the right questions to guide our exploration.
  • Dr. Paige Turner: Our lead researcher and paper expert, diving deep into the methods and results.
  • Prof. Wyd Spectrum: Our field expert, providing broader context and critical insights.