The paper introduces DriveVLM, a system that leverages Vision-Language Models for scene understanding in autonomous driving. It comprises modules for Scene Description, Scene Analysis, and Hierarchical Planning to handle complex driving scenarios. DriveVLM outperformed other models in handling uncommon objects and unexpected events, while DriveVLM-Dual achieved state-of-the-art performance in planning tasks, showing promise for future improvements in autonomous driving.
Listen on your favorite platforms
Listen to the Episode
Related Links
The (AI) Team
- Alex Askwell: Our curious and knowledgeable moderator, always ready with the right questions to guide our exploration.
- Dr. Paige Turner: Our lead researcher and paper expert, diving deep into the methods and results.
- Prof. Wyd Spectrum: Our field expert, providing broader context and critical insights.