Titans: Learning to Memorize at Test Time

The paper introduces a novel neural long-term memory module that learns to memorize and forget at test time. It addresses the challenges of existing models like RNNs and Transformers in handling long-range dependencies by incorporating dynamic memory updates based on surprise and forgetting mechanisms.
Machine Learning
Artificial Intelligence
Neural Networks
Memory Modules
Published

January 18, 2025

The key takeaways for engineers/specialists are that effective memory models need to be dynamic, surprise-driven, and have mechanisms to forget the past. The research showcases how incorporating a neural long term memory module that continuously learns at test time can lead to higher performance in language modeling, common-sense reasoning, needle-in-a-haystack tasks, DNA modeling, and time-series forecasting. By introducing the Titans architecture, the paper provides a framework for effectively integrating such memory modules into various tasks.

Listen on your favorite platforms

Spotify Apple Podcasts YouTube RSS Feed

Listen to the Episode

The (AI) Team

  • Alex Askwell: Our curious and knowledgeable moderator, always ready with the right questions to guide our exploration.
  • Dr. Paige Turner: Our lead researcher and paper expert, diving deep into the methods and results.
  • Prof. Wyd Spectrum: Our field expert, providing broader context and critical insights.