DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

The podcast discusses the paper ‘DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning’ by Dr. Paige Turner. The paper explores the use of reinforcement learning (RL) to enhance reasoning capabilities in large language models (LLMs) without the need for extensive supervised fine-tuning.
Artificial Intelligence
Reinforcement Learning
Language Models
Reasoning
Supervised Fine-Tuning
Distillation
Published

January 20, 2025

The key takeaways for engineers/specialists are: 1. Powerful reasoning can emerge from pure reinforcement learning without strict supervised fine-tuning. 2. A multi-stage pipeline using cold-start data can significantly improve the results of RL training. 3. Effective distillation techniques allow transferring reasoning knowledge from larger models to smaller, more efficient models for practical deployment.

Listen on your favorite platforms

Spotify Apple Podcasts YouTube RSS Feed

Listen to the Episode

The (AI) Team

  • Alex Askwell: Our curious and knowledgeable moderator, always ready with the right questions to guide our exploration.
  • Dr. Paige Turner: Our lead researcher and paper expert, diving deep into the methods and results.
  • Prof. Wyd Spectrum: Our field expert, providing broader context and critical insights.